Arnoldi-faber Method for Large Non Hermitian Eigenvalue Problems Vincent Heuveline and Miloud Sadkane

نویسندگان

  • Vincent Heuveline
  • Miloud Sadkane
چکیده

We propose a restarted Arnoldi's method with Faber polynomials and discuss its use for computing the rightmost eigenvalues of large non hermitian matrices. We illustrate, with the help of some practical test problems, the beneet obtained from the Faber acceleration by comparing this method with the Chebyshev based acceleration. M ethode d'Arnoldi-Faber pour les probl emes aux valeurs propres non hermitiens de grande taille R esum e : Nous proposons une m ethode de type Arnoldi red emarr ee avec des polyn^ omes de Faber et discutons son utilisation pour calculer les valeurs propres de plus grandes parties r eelles de matrices non hermitiennes de grande taille. Nous testons la m ethode obtenue sur des probl emes pratiques qui montrent sa sup eriorit e par rapport a l'acc el eration par des polyn^ omes de Chebyshev.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arnoldi-Faber method for large non hermitian eigenvalue problems

We propose a restarted Arnoldi’s method with Faber polynomials and discuss its use for computing the rightmost eigenvalues of large non hermitian matrices. We illustrate, with the help of some practical test problems, the benefit obtained from the Faber acceleration by comparing this method with the Chebyshev based acceleration. A comparison with the implicitly restarted Arnoldi method is also ...

متن کامل

Chebyshev acceleration techniques for large complex non hermitian eigenvalue problems

The computation of a few eigenvalues and the corresponding eigenvectors of large complex non hermitian matrices arises in many applications in science and engineering such as magnetohydrodynamic or electromagnetism [6], where the eigenvalues of interest often belong to some region of the complex plane. If the size of the matrices is relatively small, then the problem can be solved by the standa...

متن کامل

A Global Arnoldi Method for Large non-Hermitian Eigenproblems with Special Applications to Multiple Eigenproblems∗

Global projection methods have been used for solving numerous large matrix equations, but nothing has been known on if and how a global projection method can be proposed for solving large eigenproblems. In this paper, based on the global Arnoldi process that generates an Forthonormal basis of a matrix Krylov subspace, a global Arnold method is proposed for large eigenproblems. It computes certa...

متن کامل

Inexact Inverse Subspace Iteration with Preconditioning Applied to Non-Hermitian Eigenvalue Problems

Convergence results are provided for inexact inverse subspace iteration applied to the problem of finding the invariant subspace associated with a small number of eigenvalues of a large sparse matrix. These results are illustrated by the use of block-GMRES as the iterative solver. The costs of the inexact solves are measured by the number of inner iterations needed by the iterative solver at ea...

متن کامل

Some new restart vectors for explicitly restarted Arnoldi method

The explicitly restarted Arnoldi method (ERAM) can be used to find some eigenvalues of large and sparse matrices. However, it has been shown that even this method may fail to converge. In this paper, we present two new methods to accelerate the convergence of ERAM algorithm. In these methods, we apply two strategies for the updated initial vector in each restart cycles. The implementation of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997